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5 Banach Algebras

5.1 Invertibility and the Spectrum

Suppose X is a Banach space. Then we are often interested in (continuous)

operators on this space, i.e, elements of the space CL(X,X). We have already

seen that this is again a Banach space. However, operators can also be

composed with each other, which gives us more structure, namely that of an

algebra. It is often useful to study this abstractly, i.e., forgetting about the

original space on which the operators X act. This leads us to the concept of

a Banach algebra.

De�nition 5.1. Let A be an algebra over K. A is called a commutative

algebra i� a · b = b · a for all a, b ∈ A. An element e ∈ A is called a unit i�

e · a = a · e = a for all a ∈ A and e 6= 0. I� A is equipped with a unit it

is called a unital algebra. Assume now A to be unital and consider a ∈ A.
Then, b ∈ A is called an inverse of a i� b · a = a · b = e. An element a ∈ A
possessing an inverse is called invertible.

It is immediately veri�ed that a unit and an inverse are unique. In the

following of this section we work exclusively over the �eld C of complex

numbers.

De�nition 5.2 (Banach Algebra). A is called a Banach algebra i� it is a

complete normable topological algebra.

Proposition 5.3. Let A be a complete normable tvs and an algebra. Then,

A is a Banach algebra i� there exists a compatible norm on A such that

‖a · b‖ ≤ ‖a‖ · ‖b‖ for all a, b ∈ A. Moreover, if A is unital then it is a

Banach algebra i� there exists a compatible norm that satis�es in addition

‖e‖ = 1.

Proof. Suppose that A admits a norm generating the topology and satisfying

‖a · b‖ ≤ ‖a‖ · ‖b‖ for all a, b ∈ A. Fix a, b ∈ A and let ε > 0. Choose δ > 0
such that

(‖a‖+ ‖b‖)δ + δ2 < ε.

Then,

‖(a+ x) · (b+ y)− a · b‖ = ‖a · y+ x · b+ x · y‖ ≤ ‖a · y‖+ ‖x · b‖+ ‖x · y‖
≤ ‖a‖ · ‖y‖+ ‖x‖ · ‖b‖+ ‖x‖ · ‖y‖ < ε

if x, y ∈ Bδ(0), showing continuity of multiplication.
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Now suppose that A is a Banach algebra. Let ‖ · ‖′ be a norm generating

the topology. By continuity there exists δ > 0 such that ‖a · b‖′ ≤ 1 for all

a, b ∈ Bδ(0). But this implies ‖a · b‖′ ≤ δ−2‖a‖′ · ‖b‖′ for all a, b ∈ A. It

is then easy to see that ‖a‖ := δ−2‖a‖′ for all a ∈ A de�nes a norm that is

topologically equivalent and satis�es ‖a · b‖ ≤ ‖a‖ · ‖b‖ for all a, b ∈ A.
Now suppose that A is a unital Banach algebra. Let ‖ · ‖′ be a norm

generating the topology. As we have just seen there exists a constant c > 0
such that ‖a · b‖′ ≤ c‖a‖′ · ‖b‖′ for all a, b ∈ A. We claim that

‖a‖ := sup
‖b‖′≤1

‖a · b‖′ ∀a ∈ A

de�nes a topologically equivalent norm with the desired properties. It is easy

to see that ‖ · ‖ is a seminorm. Now note that

‖a‖ = sup
‖b‖′≤1

‖a · b‖′ ≤ c sup
‖b‖′≤1

‖a‖′ · ‖b‖′ = c‖a‖′ ∀a ∈ A.

On the other hand we have

‖a‖ = sup
‖b‖′≤1

‖a · b‖′ ≥ ‖a · e‖′

‖e‖′
=

‖a‖′

‖e‖′
∀a ∈ A.

This shows that ‖ · ‖ is indeed a norm and generates the same topology as

‖ · ‖′. The proof of the property ‖a · b‖ ≤ ‖a‖ · ‖b‖ for all a, b ∈ A now

proceeds as in Exercise 24. Finally, it is easy to see that ‖e‖ = 1.

We have already seen the prototypical example of a Banach algebra in

Exercise 24: The algebra of continuous linear operators CL(X,X) on a Ba-

nach space X.

Exercise 26. Let T be a compact topological space. Show that C(T,C)
with the supremum norm is a unital commutative Banach algebra.

Exercise 27. Consider the space l1(Z), i.e., the space of complex sequences

{an}n∈Z with ‖a‖ :=
∑

n∈Z |an| < ∞. 1. Show that this is a Banach space.

2. De�ne a multiplication by convolution, i.e., (a?b)n :=
∑

k∈Z akbn−k. Show

that this is well de�ned and yields a commutative Banach algebra.

Proposition 5.4. Let A be a unital Banach algebra and a ∈ A. If ‖e−a‖ < 1
then a is invertible. Moreover, in this case

a−1 =

∞∑
n=0

(e− a)n and ‖a−1‖ ≤ 1

1− ‖e− a‖
.
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Proof. Exercise.

Proposition 5.5. Let A be a unital Banach algebra. Denote the subset

of invertible elements of A by IA. Then, IA is open. Moreover, the map

IA → IA : a 7→ a−1 is continuous.

Proof. Consider an invertible element a ∈ IA and choose ε > 0. Set

δ := min

{
1

2
‖a−1‖−1,

1

2
ε‖a−1‖−2

}
.

Take b ∈ Bδ(a). Then b = a(e+ a−1(b− a)). But

‖a−1(b− a)‖ ≤ ‖a−1‖‖b− a‖ < ‖a−1‖δ ≤ 1

2
.

So by Proposition 5.4 the element e+a−1(b−a) is invertible. Consequently,
b is a product of invertible elements and hence itself invertible. Therefore,

Bδ(a) ⊆ IA and IA is open. Furthermore, using the same inequality we �nd

by Proposition 5.4 that

‖(e+ a−1(b− a))−1‖ ≤ 1

1− ‖a−1(b− a)‖
< 2.

This implies

‖b−1‖ ≤ ‖a−1‖‖(e+ a−1(b− a))−1‖ < 2‖a−1‖.

Hence,

‖a−1 − b−1‖ = ‖a−1(b− a)b−1‖ ≤ ‖a−1‖‖b−1‖‖b− a‖ < 2‖a−1‖2δ ≤ ε.

This shows the continuity of the inversion map, completing the proof.

De�nition 5.6. Let A be a unital Banach algebra and a ∈ A. Then, the

set σA(a) := {λ ∈ C : λe− a not invertible} is called the spectrum of a.

Proposition 5.7. Let A be a unital Banach algebra and a ∈ A. Then

the spectrum σA(a) of a is a compact subset of C. Moreover, |λ| ≤ ‖a‖ if

λ ∈ σA(a).

Proof. Consider λ ∈ C such that |λ| > ‖a‖. Then, ‖λ−1a‖ = |λ−1|‖a‖ < 1.
So, e−λ−1a is invertible by Proposition 5.4. Equivalently, λe−a is invertible
and hence λ /∈ σA(a). This proves the second statement and also implies that

σA(a) is bounded.
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It remains to show that σA(a) is closed. Take λ /∈ σA(a). Set ε :=
‖(λe − a)−1‖−1. We claim that for all λ′ ∈ Bε(λ) the element λ′e − a
is invertible. Note that ‖(λ − λ′)(λe − a)−1‖ = |λ − λ′|‖(λe − a)−1‖ <
ε‖(λe− a)−1‖ = 1. So by Proposition 5.4 the element e− (λ− λ′)(λe− a)−1

is invertible. But the product of invertible elements is invertible and so is

hence λ′e− a = (λe− a)(e− (λ− λ′)(λe− a)−1), proving the claim. Thus,

C \ σA(a) is open and σA(a) is closed, completing the proof.

Lemma 5.8. Let A be a unital algebra and a, b ∈ A. Suppose that a · b and

b · a are invertible. Then, a and b are separately invertible.

Proof. Exercise.

Theorem 5.9 (Spectral Mapping Theorem). Let A be a unital Banach al-

gebra, p a complex polynomial in one variable and a ∈ A. Then, σA(p(a)) =
p(σA(a)).

Proof. If p is a constant the statement is trivially satis�ed. We thus assume

in the following that p has degree at least 1.

We �rst prove that p(σA(a)) ⊆ σA(p(a)). Let λ ∈ C. Then the polyno-

mial in t given by p(t)−p(λ) can be decomposed as p(t)−p(λ) = q(t)(t−λ)
for some polynomial q. In particular, p(a)−p(λ) = q(a)(a−λ) in A. Suppose
p(λ) /∈ σA(p(a)). Then the left hand side is invertible and so must be the

right hand side. By Lemma 5.8 each of the factors must be invertible. In

particular, a − λ is invertible and so λ /∈ σA(a). We have thus shown that

λ ∈ σA(a) implies p(λ) ∈ σA(p(a)).

We proceed to prove that σA(p(a)) ⊆ p(σA(a)). Let µ ∈ C and factorize

the polynomial in t given by p(t) − µ, i.e., p(t) − µ = c(t − γ1) · · · (t − γn),
where c 6= 0. We apply this to a to get p(a)−µ = c(a−γ1) · · · (a−γn). Now
if µ ∈ σA(p(a)), then the left hand side is not invertible. Hence, at least one

factor a− γk must be non-invertible on the right hand side. So, γk ∈ σA(a)
and also µ = p(γk). Thus, µ ∈ p(σA(a)). This completes the proof.

De�nition 5.10. Let A be a Banach algebra and a ∈ A. We de�ne the

spectral radius of a as

rA(a) := inf
n∈N

‖an‖1/n.

Lemma 5.11. Let {cn}n∈N be a sequence of non-negative real numbers such

that cn+m ≤ cncm for all n,m ∈ N. Then {c1/nn }n∈N converges to infn∈N c
1/n
n .
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Proof. De�ne c0 := 1. For �xed m decompose any positive integer n =
k(n)m+ r(n) such that r(n), k(n) ∈ N0 and r(n) < m. Then,

c1/nn ≤ c
1/n
k(n)mc

1/n
r(n) ≤ ck(n)/nm c

1/n
r(n).

Since r(n) is bounded and k(n)/n converges to 1/m for large n the right

hand side tends to c
1/m
m for large n. This implies,

lim sup
n→∞

c1/nn ≤ c1/mm .

Since m was arbitrary we conclude,

lim sup
n→∞

c1/nn ≤ inf
n∈N

c1/nn ≤ lim inf
n→∞

c1/nn .

This completes the proof.

Proposition 5.12. Let A be a Banach algebra and a ∈ A. Then,

lim
n→∞

‖an‖1/n exists and is equal to inf
n∈N

‖an‖1/n.

Proof. If a is nilpotent (i.e., an = 0 for some n) the statement is trivial.

Assume otherwise and set cn := an. Applying Lemma 5.11 yields the result.

Lemma 5.13. Let A be a unital Banach algebra, a ∈ A and r > 0 such

that σA(a) ⊂ Br(0). Let γ be the path following the boundary of the circle of

radius r around the origin in counter-clockwise direction. Then,

an =
1

2πi

∫
γ
zn(z − a)−1dz.

Note that if A = C this is merely a consequence of the Cauchy integral

formula. The present case is a generalization to Banach algebras.

Theorem 5.14. Let A be a unital Banach algebra and a ∈ A. Then

rA(a) = sup
λ∈σA(a)

|λ|.

In particular, σA(a) 6= ∅.
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Proof. Choose λ ∈ C such that |λ| > rA(a). Then there exists n ∈ N such

that |λ| > ‖an‖1/n and hence |λn| > ‖an‖. By Proposition 5.7 we know that

λn /∈ σA(a
n). By Theorem 5.9 with p(t) = tn this implies λ /∈ σA(a). This

shows |λ| ≤ rA(a) for all λ ∈ σA(a).
Choose now r > 0 so that σA(a) is contained completely in the circle of

radius r around the origin in the complex plane. By Lemma 5.13 we get

‖an‖ =
1

2π

∥∥∥∥∫
γ
zn(z − a)−1dz

∥∥∥∥ ≤ 1

2π
rnm(r)l(γ) = rn+1m(r), (2)

where we have de�ned m(r) := max|z|=r ‖(z − a)−1‖. Also, l(γ) denotes

the length of the path γ. Note that (z − a)−1 is a continuous function on γ
since inversion in A is continuous by Proposition 5.5, so the maximum exists.

Suppose now that σA(a) = ∅. Then, a is invertible, (z−a)−1 is a continuous

function on all of C and m(r) converges for r → 0 to m(0) = ‖a−1‖. Taking
n = 1 in the inequality we obtain ‖a‖ ≤ r2m(r) which implies ‖a‖ = 0
since r is now arbitrary. Hence, a = 0 which is a contradiction with the

invertibility of a. This shows that σA(a) 6= ∅.
From the inequality (2) we infer,

‖an‖1/n ≤ r(n+1)/nm1/n.

Taking the limit n → ∞ on both sides (the existence of the limit on the

left hand side is ensured by Proposition 5.12) we get rA(a) ≤ r. But in

particular, we may choose r = ε + supλ∈σA(a) |λ| for arbitrary ε > 0. This

completes the proof.

Theorem 5.15 (Gelfand-Mazur). Let A be a unital Banach algebra such

that all its non-zero elements are invertible. Then A is isomorphic to C as

a Banach algebra.

Proof. Exercise.

5.2 The Gelfand Transform

Suppose we have some topological space T . Then, this space gives rise

to a commutative algebra, namely the algebra of continuous functions on

T (with complex values say). A natural question arises thus: If we are

given a commutative algebra, is the algebra of continuous functions on some

topological space? We might re�ne the question, considering more speci�c

spaces such as Hausdor� spaces, manifolds etc. On the other hand we could

also consider other classes of functions, e.g., di�erentiable ones etc. The
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Gelfand transform goes towards answering this question in the context of

unital commutative Banach algebras on the one hand and compact Hausdor�

spaces on the other.

5.2.1 Ideals

De�nition 5.16. Let A be an algebra. An ideal in A is a vector subspace

J of A such that aJ ⊆ J and Ja ⊆ J for all a ∈ A. An ideal is called proper

i� it is not equal to A. An ideal is called maximal i� it is proper and it is

not contained in any other proper ideal.

The special signi�cance of maximal ideals for our present purposes is

revealed by the following Exercise. This also provides a preview of what we

are going to show.

Exercise 28. Consider the Banach algebra C(T,C) of Exercise 26. Assume

in addition that T is Hausdor�. 1. Show that for any non-empty subset U
of T the set {f ∈ C(T,C) : f(U) = 0} forms a proper closed ideal. 2. Show

that the maximal ideals are in one-to-one correspondence to points of T .

Proposition 5.17. Let A be a Banach algebra. Then, the closure of an ideal

is an ideal.

Proof. Let J be an ideal. We already know that J is a vector subspace. It

remains to show the property aJ ⊆ J and Ja ⊆ J for all a ∈ A. Consider

b ∈ J . Then, there is a sequence {bn}n∈N with bn ∈ J converging to b. Take
now a ∈ A and consider the sequences {abn}n∈N and {bna}n∈N. Since J is an

ideal the elements of these sequences are all in J . And since multiplication by
a �xed element is continuous the sequences converge to ab and ba respectively.
So ba ∈ J and ab ∈ J . This completes the proof.

Proposition 5.18. Let A be a unital Banach algebra.

1. If a ∈ A is invertible it is not contained in any proper ideal.

2. Maximal ideals are closed.

3. Any proper ideal is contained in a maximal ideal.

Proof. Suppose J is an ideal containing an invertible element a ∈ A. Then,
a−1a = e ∈ J and thus J = A. This proves 1. Suppose J is a proper

ideal. Then, J is an ideal by Proposition 5.17. On the other hand, by 1. the

intersection of the set IA of invertible elements of A with J is empty. But
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by Proposition 5.5 this set is open, so IA ∩ J = ∅. Since e ∈ IA, J 6= A, i.e.,
J is proper. So we get an inclusion of proper ideals, J ⊆ J . If J is maximal

we must therefore have J = J . This proves 2. The proof of 3 is a standard

application of Zorn's Lemma.

Proposition 5.19. Let A be a Banach algebra and J a closed proper ideal.

Then, A/J is a Banach algebra with the quotient norm. If A is unital then

so is A/J . If A is commutative then so is A/J .

Proof. Exercise.

De�nition 5.20. Let A be a Banach algebra. The set of maximal ideals of

A is called the maximal ideal space and denoted by MA. The set of maximal

ideals with codimension 1 is denoted by M1
A.

Proposition 5.21. Let A be a commutative unital Banach algebra. Then,

maximal ideals have codimension 1. In particular, MA = M1
A.

Proof. Let J be a maximal ideal. By Proposition 5.18.2, J is closed. Hence,

by Proposition 5.19, A/J is a unital commutative Banach algebra. We show

that every non-zero element of A/J is invertible. For a ∈ A \ J set Ja :=
{ab+ c : b ∈ A and c ∈ J}. It is easy to see that Ja is an ideal and J ⊂ Ja as
well as Ja 6= J . Since J is maximal we �nd Ja = A. But his means there is

a b ∈ A such that [a][b] = [e] in A/J , i.e., [a] is invertible in A/J . But every
non-zero element of A/J arises as [a] with a ∈ A\J , so they are all invertible.
By the Theorem 5.15 of Gelfand-Mazur we �nd that A/J is isomorphic to

C and hence 1-dimensional. So, J must have codimension 1.

5.2.2 Characters

De�nition 5.22. Let A be a Banach algebra. An algebra homomorphism

φ : A → C is called a character of A.

Proposition 5.23. Let A be a Banach algebra. Then, any character φ :
A → C is continuous. Moreover, ‖φ‖ ≤ 1. If A is also unital and φ 6= 0
then φ(e) = 1 and ‖φ‖ = 1.

Proof. Consider an algebra homomorphism φ : A → C. Suppose |φ(a)| >
‖a‖ for some a ∈ A. Then we can �nd λ ∈ C such that φ(λa) = 1 while

‖λa‖ < 1. Set b :=
∑∞

n=1(λa)
n. Then b = λa + λab and we obtain the

contradiction φ(b) = φ(λa) + φ(λa)φ(b) = 1 + φ(b). Thus, |φ(a)| ≤ ‖a‖ for

all a ∈ A and φ must be continuous. Also, ‖φ‖ ≤ 1.
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Now assume in addition that A is unital and φ 6= 0. Then there exists a ∈
A such that φ(a) 6= 0. We deduce φ(e) = 1 since φ(a) = φ(ea) = φ(e)φ(a)
and thus ‖φ‖ ≥ 1.

De�nition 5.24. Let A be a Banach algebra. The set of non-zero characters

on A is called the character space or Gelfand space of A, denoted by ΓA. We

view ΓA as a subset of A∗, but equipped with the weak∗ topology. De�ne

the map A → C(ΓA,C) given by a 7→ â where â(φ) := φ(a). This map is

called the Gelfand transform.

Proposition 5.25. Let A be a unital Banach algebra. Then, ΓA is a compact

Hausdor� space.

Proof. Since A is Hausdor� with the weak∗ topology so is its subset ΓA.

Let φ ∈ ΓA. By Proposition 5.23, φ is contained in the unit ball B1(0) ⊂
A∗. But by Corollary 4.22, B1(0) is compact in in the weak∗ topology so

ΓA is relatively compact. It remains to show that ΓA is closed in weak∗

topology. Suppose φ ∈ ΓA. Pick two arbitrary elements a, b ∈ A. We know

that the Gelfand transforms â, b̂ are continuous functions on Ã. Hence,

choosing an arbitrary ε > 0 we can �nd φ′ ∈ ΓA such that |φ′(a)− φ(a)| < ε
and |φ′(b) − φ(b)| < ε and |φ′(ab) − φ(ab)| < ε. Exercise.Explain! Then,

|φ′(a)φ′(b) − φ(a)φ(b)| < ε(|φ(a)| + |φ(b)| + ε). But, φ′ is a character, so

φ′(a)φ′(b) = φ′(ab). Thus, |φ(a)φ(b) − φ(ab)| < ε(1 + |φ(a)| + |φ(b)| + ε).
Since ε was arbitrary we conclude that φ(a)φ(b) = φ(ab). This argument

holds for any a, b so φ is a character. We have thus shown that either

ΓA = ΓA or ΓA = ΓA ∪ {0}. To exclude the second possibility we need the

unitality of A. Consider the subset E := {φ ∈ Ã : φ(e) = 1} ⊂ A∗. This

subset is closed since it is the preimage of the closed set {1} ⊂ C under the

Gelfand transform ê of the unit e of A. Now, ΓA ⊆ E, but {0} /∈ E, so

{0} /∈ ΓA.

We are now ready to link the character space with the maximal ideal

space introduced earlier. They are (essentially) the same!

Theorem 5.26. Let A be a Banach algebra. There is a natural map γ :
ΓA → M1

A given by φ 7→ kerφ. If A is unital, this map is bijective.

Proof. Consider φ ∈ ΓA. Suppose a ∈ kerφ. Then, for any b ∈ A we

have ab ∈ kerφ and ba ∈ kerφ since φ(ab) = φ(a)φ(b) = 0 and φ(ba) =
φ(b)φ(a) = 0. Thus, kerφ is an ideal. It is proper since φ 6= 0. Now choose

a ∈ A such that φ(a) 6= 0. For arbitrary b ∈ A there is then a λ ∈ C such

that φ(b) = φ(λa), i.e., φ(b − λa) = 0 and b − λa ∈ kerφ. In particular,
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b ∈ λa+kerφ. So kerφ has codimension 1 in A and must be maximal. This

shows that γ is well de�ned.

Suppose now that A is unital and that J is a maximal ideal of codimen-

sion 1. Note that we can write any element a of A uniquely as a = λe + b
where λ ∈ C and b ∈ J . In order for J = kerφ for some φ ∈ ΓA we must

then have φ(λe+b) = λφ(e)+φ(b) = λ. This determines φ uniquely. Hence,

γ is injective. On the other hand, this formula de�nes a non-zero linear map

φ : A → C. It is easily checked that it is multiplicative and thus a character.

Hence, γ is surjective.

Proposition 5.27. Let A be a unital Banach algebra and a ∈ A. Then,

{φ(a) : φ ∈ ΓA} ⊆ σA(a). If A is commutative, then even {φ(a) : φ ∈ ΓA} =
σA(a). In particular, ΓA 6= 0.

Proof. Suppose λ = φ(a) for some φ ∈ ΓA. Then, φ(λe − a) = 0, i.e.,
λe − a ∈ kerφ. But by Theorem 5.26, kerφ is a maximal ideal which by

Proposition 5.18.1 cannot contain an invertible element. So λe − a is not

invertible and λ ∈ σA(a). This proves the �rst statement.

Suppose now that A is commutative and let λ ∈ σA(a). De�ne J :=
{b(λe − a) : b ∈ A}. It is easy to see that J de�nes an ideal. It is proper,

since λe − a is not invertible. So, by Proposition 5.18.3 it is contained in a

maximal ideal J ′. This maximal ideal has codimension 1 by Proposition 5.21

and induces by Theorem 5.26 a non-zero character φ with kerφ = J ′. Hence,
φ(λe− a) = 0 and φ(a) = λ. This completes the proof.

When ΓA is compact, then the set of continuous functions of ΓA forms

a unital commutative Banach algebra by Exercise 26. We then have the

following Theorem.

Theorem 5.28 (Gelfand Representation Theorem). Let A be a unital Ba-

nach algebra. The Gelfand transform A → C(ΓA,C) is a continuous unital

algebra homomorphism. The image of A under the Gelfand transform, de-

noted Â, is a normed subalgebra of C(ΓA,C). Moreover, ‖â‖ ≤ rA(a) ≤ ‖a‖
and σÂ(â) ⊆ σA(a) for all a ∈ A. If A is commutative we have the sharper

statements ‖â‖ = rA(a) and σÂ(â) = σA(a).

Proof. The property of being a unital algebra homomorphism is clear. For

a ∈ A we have ‖â‖ = supφ∈ΓA
|φ(a)|. By Proposition 5.27 combined with

Theorem 5.14 we then �nd ‖â‖ ≤ rA(a) and in the commutative case ‖â‖ =
rA(a). On the other hand Proposition 5.7 combined with Theorem 5.14

implies rA(a) ≤ ‖a‖. Thus, the Gelfand transform is bounded by 1 and hence
continuous. Since the Gelfand transform is a unital algebra homomorphism,
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invertible elements are mapped to invertible elements, so σÂ(â) ⊆ σA(a).
Let a ∈ A and consider λ ∈ C. If φ(a) = λ for some φ ∈ ΓA then λê − â
vanishes on this φ and cannot be invertible in Ã, i.e., λ ∈ σÂ(â). Using

Proposition 5.27 we conclude σÂ(â) ⊇ σA(a) in the commutative case.

Proposition 5.29. Let A be a unital commutative Banach algebra. Suppose

that ‖a2‖ = ‖a‖2 for all a ∈ A. Then, the Gelfand transform A → C(ΓA,C)
is isometric. In particular, it is injective and its image Â is a Banach algebra.

Proof. Under the assumption limn→∞ ‖an‖1/n, which exists by Proposition 5.12,
is equal to ‖a‖ for all a ∈ A. By the same Proposition then rA(a) = ‖a‖. So
by Theorem 5.28, ‖â‖ = rA(a) = ‖a‖. Isometry implies of course injectivity.

Moreover, it implies that the image is complete since the domain is complete.

So Â is a Banach algebra.

Exercise 29. Let A = C(T,C) be the Banach algebra of Exercises 26 and

28. Show that ΓA = T as topological spaces in a natural way and that the

Gelfand transform is the identity under this identi�cation.


